Definition Motivation Derivatives Code Review

Logistic Regression

A brief tutorial

Jay

January 28, 2015

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review



Basics

- Counterpart of Linear Regression
- Basic model for Classification
- Logistic: Uses the logit function
- Regression: Predicts the probability of an outcome

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Parameters

x '	l instance에 대한ℜ⁴ 크기의 feature vector
y'	l instance에 대한 ℜ 크기의 label
w'	Model의 ੴ크기의 weight vector
b	Model의 왔크기의 bias value

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Logistic Regression Model

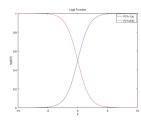
Modeling of log of odds ratio

$$\log \frac{P(y^{l} = 1|x)}{1 - P(y^{l} = 1|x)} = w^{T}x + b$$

•
$$P(y^{I} = 1 | \mathbf{x}^{I}) = \frac{e^{\mathbf{w}^{T} \mathbf{x} + b}}{1 + e^{\mathbf{w}^{T} \mathbf{x} + b}}$$

• $P(y^{I} = 0 | \mathbf{x}^{I}) = \frac{1}{1 + e^{\mathbf{w}^{T} \mathbf{x} + b}}$

•
$$P(y^l = 0 | \mathbf{x}^l) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x} + b}}$$



- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Training

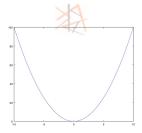
Cost function

$$J = -\sum_{l} y^{l} \ln (P(y^{l} = 1 | \mathbf{x}^{l})) + (1 - y^{l}) \ln (1 - P(y^{l} = 0 | \mathbf{x}^{l}))$$

- If y' = 1
 In (P(y' = 1|x'))을 최대화하는 w
- If y' = 0 In (1 P(y' = 0 | x'))을 최대화하는 w

Gradient Descent (because not strictly convex)

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial \mathbf{J}}{\partial \mathbf{W}}$$



- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review



Testing

•
$$P(y^l = 1 | x^l) = \frac{e^{w^T x + b}}{1 + e^{w^T x + b}}$$

•
$$P(y^I = 0 | \mathbf{x}^I) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x} + b}}$$

Example:

•
$$x_i = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

•
$$w = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$

•
$$P(y^I = 1 | \mathbf{x}^I) = \frac{e^{-3}}{1 + e^{-3}} = 0.0474$$

•
$$P(y^l = 0 | \mathbf{x}^l) = \frac{1}{1 + e^{-3}} = 0.953$$

Thus, x_i is classified as $y^l = 0$

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing

- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Maximum Likelihood

Bayes' formula

$$Posterior = \frac{likelihood \times prior}{evidence}$$

$$P(x|y) = \frac{P(y|x) \times P(x)}{P(y)}$$
(1)

Assuming i.i.d

$$likelihood(\mathbf{w}) = \prod_{l} P(Y^{l} = y_{k} | \mathbf{x}^{l}, \mathbf{w})$$

$$l(\mathbf{w}) = -\ln \prod_{l} P(y^{l} = y_{k} | \mathbf{x}^{l}, \mathbf{w})$$

$$= -\sum_{l} \ln P(y^{l} = y_{k} | \mathbf{x}^{l})$$
(2)

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testino

- 2 Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Maximum Entropy

0

$$P(y = scissors) = 33\%$$

 $P(y = rock) = 33\%$
 $P(y = paper) = 33\%$

$$P(y = scissors) = 98\%$$

 $P(y = rock) = 1\%$
 $P(y = paper) = 1\%$

Entropy: $H = -\sum_{i} p_{i} \log_{2} p_{i}$ Conditional Entropy : $H(y|x) = -\sum_{x,y} \tilde{p}(x)p(y|x) \log p(y|x)$

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Maximum Entropy Model

Logistic Regression is equivalent to the basic Maximum Entropy model

$$\xi(p,\lambda,\gamma) = -\left(\sum_{x,y} \tilde{p}(x)p(y|x)\log p(y|x)\right) + \left(\sum_{i} \lambda_{i} \sum_{x,y} \tilde{p}(x)p(y|x)f_{i}(x,y) - \tilde{p}(x,y)f_{i}(x,y)\right) + \gamma\left(1 - \sum_{y} p(y|x)\right)$$
(3)

Maximum Entropy Model

$$\frac{\partial \xi}{\partial p(y|x)} = 0$$

Primal Function

$$p(y|x) = exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right) exp\left(-\frac{\gamma}{\tilde{p}(x)} - 1\right)$$

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Naive Bayes

Naive Bayes (Generative) vs Logistic Regression (Discriminative)

Discriminative:

$$argmax_y p(y|x)$$

Generative:

$$argmax_y p(x|y)p(y)$$

$$P(x_1,x_2,\ldots,x_n|y)=\prod_i P(x_i|y)$$

$$y \leftarrow argmax_k \left(P(Y = y_k) \prod_i P(x_i | Y = y_k) \right)$$

Naive Bayes

Assuming a Gaussian Naive Bayes with parameters μ_{ik} , σ_{ik}^2 , π_k

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp\left(\ln\left(\frac{1-\pi}{\pi}\right) + \sum_{i} \left(x_{i} \frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right)\right)}$$

Equivalent model assuming

- Infinite i.i.d data
- Naive bayes assumption

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- Motivation
 - Maximum Likelihood
 - Maximum Entropy
- 3 Derivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Basic equation

$$p(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{Z} \prod_{A} \Psi_{A}(\boldsymbol{x}_{A},\boldsymbol{y}_{A})$$

Definition of psi

$$\Psi_{A}(\boldsymbol{x}_{A},\boldsymbol{y}_{A}) = \exp\left(\sum_{k} \theta_{Ak} f_{Ak}(\boldsymbol{x}_{A},\boldsymbol{y}_{A})\right)$$

HMM implementation of CRF

$$P(y, \mathbf{x}) = \exp \left\{ \sum_{t} \left(\sum_{i, j \in S} \mathbf{1}_{y_{t-1} = j} \mathbf{1}_{y_t = i} \ln p(y_t | y_{t-1}) + \sum_{i \in S} \sum_{o \in O} \mathbf{1}_{x_t = o} \mathbf{1}_{y_t = i} \ln p(x_t | y_t) \right) \right\}$$

- Definition
 - Basics
 - Parameters
 - Basic Model
 - Training
 - Testing
- Motivation
 - Maximum Likelihood
 - Maximum Entropy
- Operivatives
 - Maximum Entropy Model
 - Naive Bayes
 - CRF
- Code Review

Code Review

- Preprocessing
- Running Algorithm
- Evaluation

